
Notes for AA214, Chapter 3

T. H. Pulliam

Stanford University

January, 25 2007

1



Modified Wave Number Analysis

1. Arbitrary periodic functions can be decomposed into their Fourier components, which are in the

form eiκx, where κ is the wavenumber. For a general κ

u(x) = cκe
iκx

2. The exact derivative in x
∂ u(x)

∂x
= iκcκe

iκx = iκ u(x)

3. How will a finite-difference operator δx approximate the derivative of uj = cκe
iκxj , xj = j∆x

4. By definition we have (iκ∗ is the modified wave number)

δxuj = iκ∗cκe
iκx = iκ∗uj

5. The particular form of iκ∗ depends on the choice of δx

2



Modified Wave Number - Central Differencing

1. Central Difference:

δc
x uj =

uj+1 − uj−1

2∆x

2. Using uj = eiκj∆x we have

δc
xuj =

eiκ(j+1)∆x − eiκ(j−1)∆x

2∆x
=

e iκ∆x − e− iκ∆x

2∆x
eiκj∆x =

e iκ∆x − e− iκ∆x

2∆x
uj = iκ∗cuj

3. Using the definition of the complex exponential e iκ∆x = cos(κ∆x) + isin(κ∆x) we have

iκ∗c = i
sin(κ∆x)

∆x

4. The modified wave number iκ∗ is an approximation to iκ the “exact” wave number.

5. For δc
x, using the infinite series expansion of sin(x) = x− x3

3! + x5

5! + · · ·

iκ∗c = i
sin(κ∆x)

∆x
=

i

∆x


(κ∆x)− (κ∆x)3

6
+ O(∆x5)


 = iκ


1− (κ∆x)2

6
+ O(∆x4)




6. Therefore iκ∗c = iκ− iκ (κ∆x)2

6 + O(∆x4) = iκ + O(∆x2) a second order approximation.
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Modified Wave Number - 1st Order Backward Differencing

1. Backward Difference:

δb
x uj =

uj − uj−1

∆x

2. Using uj = eiκj∆x we have

δb
xuj =

eiκj∆x − eiκ(j−1)∆x

∆x
=

1− e− iκ∆x

∆x
eiκj∆x =

1− e− iκ∆x

∆x
uj = iκ∗buj

3. Expanding in sin and cos

iκ∗b =
1− cos(κ∆x) + isin(κ∆x)

∆x

4. For δb
x, using the infinite series expansion of sin(x) and cos(x) = 1− x2

2! + x4

4! + · · ·

iκ∗b =
1

∆x





(κ∆x)2

2
+ O(∆x4)


 + i


(κ∆x)− (κ∆x)3

6
+ O(∆x5)







=
κ2∆x

2
+ O(∆x3) + iκ


1− (κ∆x)2

6
+ O(∆x4)




5. Therefore iκ∗b = iκ + O(∆x) a first order approximation.
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Solution to the Discrete PDE

1. The discrete PDE is
∂u(t)j

∂t
+ aδxu(t)j = 0

2. Using seperation of variables: u(t)j = eiκj∆xf(t) and applying the general result δxuj = iκ∗uj

∂eiκj∆xf(t)

∂t
+ aiκ∗eiκj∆xf(t) = 0

3. The ODE for f(t) is ∂f(t)
∂t + af(t)iκ∗ = 0 with solution f(t) = f(0)e−aiκ∗ t giving

u(t)j = cκe
iκj∆xe−aiκ∗ t, cκ = f(0)

4. Comparing this discrete solution with the continuous solution

u(x, t) = cκe
iκxe−aiκ t

we can see how the choice of δx affects the phase and amplitude of the computed solution.
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Effect of Modified Wave

1. For central differencing iκ∗c = iκ− iκ (κ∆x)2

6 + O(∆x4), plugging it into the discrete solution gives

u(t)j = cκe
iκj∆xe−aiκ−iκ (κ∆x)2

6 +O(∆x4) t = cκe
iκj∆xe

−aiκ
[
1− (κ∆x)2

6 +O(∆x4)
]

t

2. Dropping the O(∆x4) term and defining a∗ = a
[
1− (κ∆x)2

6

]
the modified wave speed

u(t)j = cκe
iκj∆xe−a∗iκ t

as the discrete solution using central differencing.

3. This shows that each wave slows down by (κ∆x)2

6 which is a function of κ.

4. Following the same reasoning for the backward differencing iκ∗b

u(t)j = cκe
iκj∆xe

−a
[

κ2∆x
2 +iκ

[
1− (κ∆x)2

6

]]
t

slowing down the waves and also damping them by κ2∆x
2

5. We can characterize the error by plotting κ∗∆x against κ∆x
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